34 research outputs found

    Perception of Color Break-Up

    Get PDF
    Hintergrund. Ein farbverfälschender Bildfehler namens Color Break-Up (CBU) wurde untersucht. Störende CBU-Effekte treten auf, wenn Augenbewegungen (z.B. Folgebewegungen oder Sakkaden) während der Content-Wiedergabe über sogenannte Field-Sequential Color (FSC) Displays oder Projektoren ausgeführt werden. Die Ursache für das Auftreten des CBU-Effektes ist die sequenzielle Anzeige der Primärfarben über das FSC-System. Methoden. Ein kombiniertes Design aus empirischer Forschung und theoretischer Modellierung wurde angewendet. Mittels empirischer Studien wurde der Einfluss von hardware-, content- und betrachterbasierten Faktoren auf die CBU-Wahrnehmung der Stichprobe untersucht. Hierzu wurden zunächst Sehleistung (u. a. Farbsehen), Kurzzeitzustand (u. a. Aufmerksamkeit) und Persönlichkeitsmerkmale (u. a. Technikaffinität) der Stichprobe erfasst. Anschließend wurden die Teilnehmenden gebeten, die wahrgenommene CBU-Intensität verschiedener Videosequenzen zu bewerten. Die Sequenzen wurden mit einem FSC-Projektor wiedergegeben. Das verwendete Setup ermöglichte die Untersuchung folgender Variablen: die Größe (1.0 bis 6.0°) und Leuchtdichte (10.0 bis 157.0 cd/m2) des CBU-provozierenden Contents, das Augenbewegungsmuster des Teilnehmenden (Geschwindigkeit der Folgebewegung: 18.0 bis 54.0 °/s; Amplitude der Sakkade: 3.6 bis 28.2°), die Position der Netzhautstimulation (0.0 bis 50.0°) und die Bildrate des Projektors (30.0 bis 420.0 Hz). Korrelationen zwischen den unabhängigen Variablen und der subjektiven CBU-Wahrnehmung wurden getestet. Das ergänzend entwickelte Modell prognostiziert die CBU-Wahrnehmung eines Betrachters auf theoretische Weise. Das Modell rekonstruiert die Intensitäts- und Farbeigenschaften von CBU-Effekten zunächst grafisch. Anschließend wird die visuelle CBU-Rekonstruktion zu repräsentativen Modellindizes komprimiert, um das modellierte Szenario mit einem handhabbaren Satz von Metriken zu quantifizieren. Die Modellergebnisse wurden abschließend mit den empirischen Daten verglichen. Ergebnisse. Die hohe interindividuelle CBU-Variabilität innerhalb der Stichprobe lässt sich nicht durch die Sehleistung, den Kurzzeitzustand oder die Persönlichkeitsmerkmale eines Teilnehmenden erklären. Eindeutig verstärkende Bedingungen der CBU-Wahrnehmung sind: (1) eine foveale Position des CBU-Stimulus, (2) eine reduzierte Stimulusgröße während Sakkaden, (3) eine hohe Bewegungsgeschwindigkeit des Auges und (4) eine niedrige Bildrate des Projektors (Korrelation durch Exponentialfunktion beschreibbar, r2 > .93). Die Leuchtdichte des Stimulus wirkt sich nur geringfügig auf die CBU-Wahrnehmung aus. Generell hilft das Modell, die grundlegenden Prozesse der CBU-Genese zu verstehen, den Einfluss von CBU-Determinanten zu untersuchen und ein Klassifizierungsschema für verschiedene CBU-Varianten zu erstellen. Das Modell prognostiziert die empirischen Daten innerhalb der angegebenen Toleranzbereiche. Schlussfolgerungen. Die Studienergebnisse ermöglichen die Festlegung von Bildraten und Eigenschaften des CBU-provozierenden Content (Größe und Position), die das Überschreiten vordefinierter, störender CBU-Grenzwerte vermeiden. Die abgeleiteten Hardwareanforderungen und Content-Empfehlungen ermöglichen ein praxisnahes und evidenzbasiertes CBU-Management. Für die Vorhersage von CBU kann die Modellgenauigkeit weiter verbessert werden, indem Merkmale der menschlichen Wahrnehmung berücksichtigt werden, z.B. die exzentrizitätsabhängige Netzhautempfindlichkeit oder Änderungen der visuellen Wahrnehmung bei unterschiedlichen Arten von Augenbewegungen. Zur Modellierung dieser Merkmale können teilnehmerbezogene Daten der empirischen Forschung herangezogen werden.Background. A color-distorting artifact called Color Break-Up (CBU) has been investigated. Disturbing CBU effects occur when eye movements (e.g., pursuits or saccades) are performed during the presentation of content on Field-Sequential Color (FSC) display or projection systems where the primary colors are displayed sequentially rather than simultaneously. Methods. A mixed design of empirical research and theoretical modeling was used to address the main research questions. Conducted studies evaluated the impact of hardware-based, content-based, and viewer-based factors on the sample’s CBU perception. In a first step, visual performance parameters (e.g., color vision), short-term state (e.g., attention level), and long-term personality traits (e.g., affinity to technology) of the sample were recorded. Participants were then asked to rate the perceived CBU intensity for different video sequences presented by a FSC-based projector. The applied setup allowed the size of the CBU-provoking content (1.0 to 6.0°), its luminance level (10.0 to 157.0 cd/m2), the participant’s eye movement pattern (pursuits: 18.0 to 54.0 deg/s; saccadic amplitudes: 3.6 to 28.2°), the position of retinal stimulation (0.0 to 50.0°), and the projector’s frame rate (30.0 to 420.0 Hz) to be varied. Correlations between independent variables and subjective CBU perception were tested. In contrast, the developed model predicts a viewer’s CBU perception on an objective basis. The model graphically reconstructs the intensity and color characteristics of CBU effects. The visual CBU reconstruction is then compressed into representative model indices to quantify the modeled scenario with a manageable set of metrics. Finally, the model output was compared to the empirical data. Results. High interindividual CBU variability within the sample cannot be explained by a participant’s visual performance, short-term state or long-term personality traits. Conditions that distinctly elevate the participant’s CBU perception are (1) a foveal stimulus position on the retina, (2) a small-sized stimulus during saccades, (3) a high eye movement velocity, and (4) a low frame rate of the projector (correlation expressed by exponential function, r2 > .93). The stimulus luminance, however, only slightly affects CBU perception. In general, the model helps to understand the fundamental processes of CBU genesis, to investigate the impact of CBU determinants, and to establish a classification scheme for different CBU variants. The model adequately predicts the empirical data within the specified tolerance ranges. Conclusions. The study results allow the determination of frame rates and content characteristics (size and position) that avoid exceeding predefined annoyance thresholds for CBU perception. The derived hardware requirements and content recommendations enable practical and evidence-based CBU management. For CBU prediction, model accuracy can be further improved by considering features of human perception, e.g., eccentricity-dependent retinal sensitivity or changes in visual perception with different types of eye movements. Participant-based data from the empirical research can be used to model these features

    Colour assessment outcomes – a new approach to grading the severity of color vision loss

    Get PDF
    INTRODUCTION: Recent studies have shown that a significant percentage of subjects with anomalous, congenital trichromacy can perform the suprathreshold, colour-related tasks encountered in many occupations with the same accuracy as normal trichromats. In the absence of detailed, occupation-specific studies, an alternative approach is to make use of new findings and the statistical outcomes of past practices that have been considered safe to produce graded, justifiable categories of colour vision that can be enforced. METHODS: We analyzed traditional color assessment outcomes and measured severity of colour vision loss using the CAD test in 1363 subjects (336 normals, 705 deutan, 319 protan and 3 tritan). The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. RESULTS: The correlation between the number of Ishihara (IH) test plates subjects fail and the severity of RG colour vision loss was very poor. The 38 plates IH test has high sensitivity when no errors are allowed (i.e., only 0.71% deutans and 0.63% protans pass). Protocols based on zero errors are uncommon since 18.15% of normal trichromats fail. The most common protocols employ either the 24 or the 14 plates editions with two or less errors. These protocols pass almost all normal trichromats, but the deutans and some protans that also pass (when two or less errors are allowed) can be severely deficient. This is simply because the most challenging plates have not been included in the 24 and 14 plates editions. As a result, normals no longer fail, but the deutans and protans that pass have more severe loss of colour vision since they fail less challenging plates. The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. DISCUSSION: Historical evidence and new findings that relate severity of loss to the effective use of colour signals in a number of tasks provide the basis for a new colour grading system based on six categories. A single colour assessment test is needed to establish the applicant’s Colour Vision category which can range from ‘supernormal’ (CV0), for the most stringent, colour-demanding tasks, to ‘severe colour deficiency’, when red / green colour vision is either absent or extremely weak (CV5)

    Investigation on Adjoint Based Gradient Computations for Realistic 3d Aero-Optimization

    Get PDF
    A discrete adjoint method for e�ciently computing gradients for aerodynamic shape op- timizations is presented. The chain itself involves an unstructured mesh Reynolds-Averaged Navier-Stokes solver, and is suitable for the optimization of complex geometries in three dimensions. In addition to the discrete ow adjoint the method introduces a second ad- joint equation for the mesh deformation. Using the adjoint chain it is possible to evaluate the gradients of a cost function for the cost of one adjoint ow solution and one adjoint volume mesh deformation, without performing any (forward) mesh deformation. By choos- ing a suitable mesh deformation operator, like linear elasticity, the chain may be readily constructed by hand. Furthermore, this adjoint chain can be subsequently used with pa- rameterized surface grids. The accuracy and the computational savings of the resulting procedure is examined for the gradient-based shape optimization of a wing in inviscid ow
    corecore